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Why are we interested in 

N2O and CH4 emissions 

from soils? 

 

 



Soils are important sources and 

sinks of N2O and CH4 
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Soil is responsible for >60% of 

global N2O emissions 

Wetlands are responsible for 30% of 

global CH4 emissions. Dry soils are a 

sink for CH4 (30 Tg/y) 



Global warming potential of N2O 

and CH4 is larger than for CO2 

Global warming potential over 

a 100 year period 

 

CO2 = 1  

  CH4 = 25 

   N2O = 298 
 

CH4 increase is responsible for 20% and N2O for 6% of the 

GHG effect 

 

 



GHG reporting requirements 

• International reporting requirements 

– Kyoto Protocol:  The signatories must submit annual 

reports to the UNFCCC. 

 

– Reduce EU emissions  by  > 50%  - 2050 of 1990 

levels 

 

• Carbon footprints for biofuel production, food…   

 
 

 



The current inventory structure is ‘bottom up’. Data from national 
surveys are multiplied by default IPCC emission factors based on 
international literature review. At present there is little in the way of 
external validation of the estimated emissions. 
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N2O 

NO3
- N2O 

Nitrification 

•  Freely drained soils 

•  WFPS < 60% 

•  Nitrogen 
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Denitrification 

•  Impaired drainage 

•  WFPS > 60% 

•  Carbon  

•  Nitrogen 

 

•Waterlogged soils 

• organic matter 

 

 

CH4 emission CH4 oxidation 
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The control of N2O and CH4 

Nitrous Oxide Methane

Landuse change Pulsing Freeze - thaw
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Most of our knowledge of N2O 

and CH4 has come from studies 

in temperate climates using 

static chambers 



 Trace gas flux measurements 



Analytical techniques to  

measure N2O and CH4 

Gas chromatography 
Photoacustic infrared detection 

Infrared absorption (quantum cascade laser) 

Cavity ring down spectroscopy 

Infrared absorption (tunable 

diode laser) 



Nitrogen stimulates N2O emissions 
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Spatial and temporal variability of N2O and 

CH4 fluxes is caused by changes in soil N and 

water filled pore space 
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Nitrogen fertiliser type effects  

soil N2O emissions 
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Fertiliser response depends on fertiliser type (organic or mineral) and rainfall 
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Methane emission is influenced by temperature, 

water table height and vegetation 

Ding et al. 2005 Atmospheric Environment 39: 3199–3207. 

Plant transport of CH4
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CH4 oxidation is reduced by disturbance and 

increased bulk density 

J.A. MacDonald et al.,1998. Global 

Change Biology, 4, 409-418.  

 

Smith K.A. et al., 2000.  Global 

Change Biology, 6, 791-803.  

 

Mbalmayo Forest Reserve, Cameroon 



Effect of logging on soil GHG fluxes 

• Pasoh Forest (70 km SE of 

Kuala Lumpur) 

• Logging: removal of trees, 

stumps and brash remained 

Logging increased 

• Bulk density 

• Soil temperature 

• Mineral nitrogen 

 

Consequences are 

• Increased N2O emissions 

• Decreased CH4 oxidation 

for at least 1 year 
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Deforestation 
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Effects of deforestation on N2O and CH4 fluxes in temperate and 

tropical climates is not sufficiently studied to inform inventories  
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N2O emissions from forest, sago, oil palm 

on peat, Mukah Div., Sarawak 

Environmental factors  

determining N2O fluxes 

• Forest: Water table,+ NH4 

• Sago: Temp., NO3 

• Oil palm: WFPS, NH4,Temp. 

 
Melling et al.,2007, Soil Sci & 

Plant Nutr. 53, 792-805.  

Cultivation of a peat swamp forest has increased 

N2O emission by 371% (sago) and 71% (oil palm) 
 



N2O & CH4 fluxes from forests & oil 

palm on mineral soil 
Sabah, Danum Valley & Lahad Datu 

Siong, J. 2012, Masters Thesis,  

University of Sabah, Malaysia. 

In collaboration with NERC OP3 
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Heavily disturbed forestOil palm plantation
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Annual N2O and CH4 emission 

estimates for oil palm at Lahad Datu 

• Fertiliser application  of 81 kg N/ha applied to 4 holes 

around stem  

• Assumed increased N2O for  2* 33 days over 2 m2 / 

tree 

• Annual flux 4.4 kg N2O-N/ha/y & 3.5 kg CH4/ha/y 

• 4.4 kg N2O-N/ha/y = 5.5 % of N input 

• It is likely that fertiliser induced N2O emissions from 

oil palm are larger than  IPCC predicted emissions 

(Tier 1) 

 



Mitigation of N2O  

• Aim for maximum yield 

• Optimise fertiliser application rates 

• Don’t fertilise before rainfall or when soil is very 

wet 

• Use slow release fertiliser or nitrification 

inhibitors 

• Maintain good soil structure 

• Use legumes as biological N source 

• Cultivate grasslands rather than forests  
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Mitigation of N2O 
Don’t fertilise during or immediately before heavy 

rainfall 
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16 – 66% of annual N2O emissions occurred in 

the 21 day period after fertiliser application 



Mitigation of N2O 
Use slow release fertiliser or nitrification inhibitors 
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Mitigation of N2O  

• Use legumes as biological N source 

Synthesis of mineral N has a high carbon footprint 

 

• Cultivate grasslands rather than forests  

 

 

 

Conversion to oil palm Mg CO2 ha-1  (over 25 years) 

Tropical grassland  -135 

Tropical forest on mineral soil +650 

Tropical forest on peat +1300 

Germer & Sauerborn, 2007. Environ. Dev. Sustain. DOI 10.1007/s10668-006-9080-1 



Mitigating CH4 

• Maintain high bulk density to maximise CH4 

oxidation 

 

• Minimise soil disturbance during conversion 

   from forest /grasslands to cropsystems 

 

  

 



Summary 

• Agricultural management and land use change 

often increases N2O emissions and reduces CH4 

oxidation rates. 

• Large uncertainties in fluxes need to be 

addressed by  

• improving spatial and temporal coverage of flux 

data and its key variables. 

• Detailed investigation of landuse change effects, 

especially in the tropics 

• N2O and CH4 emissions need to be included in 

all carbon foot print analyses 

 

 



The CEH static chamber for N2O and CH4 flux measurements 
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